Roll No	Total Printed Pages -14	1. Let $\phi(x)$ be a test function for testing H_0 : $\theta = \theta_0$ versus
		$H_1: \theta = \theta_1$ for a certain distribution $f(x, \theta)$, Then type-II er-
F - 1029		ror of the test is given by
		(A) E ₀ [d(x)]
M.A./M.Sc. (Fourth Semester) EXAMINATION, May-June, 2022		(B) Ε _θ [1-d(x)]
		(C) E _{θ₀} [1-d(x)]
STATISTICS		(D) E _θ [d(x)]
Paper Second		2. Let X has cauchy distribution with pdf
(Inference-II)		$f(\mathbf{x}, \theta) = \frac{\pi[1 + (x - \theta)^2]}{\pi[1 + (x - \theta)^2]}, -\infty < x, \theta < \infty \text{ . In test } \mathbf{H}_0: \theta = 0 \text{ versus}$ $\mathbf{H}_1: \theta = 1 \text{ the critical region is given as } 1 \le x \le 3, \text{ then size}$
Time : Three Hours]	[Maximum Marks: 80	of the test is
Note- All sections as directed.		(A) $\frac{\tan^{-1}3}{\pi} - \frac{1}{4}$
Section - A		(B) $\tan^{-1}3 - \frac{\pi}{4}$
(Objective/Multiple Type Questions)		(C) $\frac{1}{4} - \frac{\tan^{4} 3}{\pi}$
	(1 mark each)	(D) $\frac{\pi}{4} - \tan^{-1}3$
Note- Attempt all questions	s. Choose the correct an-	
swer.		

P.T.O.

F- 1029

[2]

- 3. For any test to test H: $\theta \le 0.5$ versus K: $\theta > 0.5$, if size of the best test is 0.05 and power is 0.85 and test is called
 - (A) UMP biased
 - (B) UMP unbiased
 - (C) MP biased
 - (D) MP unbiased
- 4. Consider the following statements for testing simple null versus simple alternative hypothesis.

I: The NP lemma does require the sample values to be independent and identically distributed

II: The distribution specified under null and alternative hypothesis must belong to the same family.

The correct answer is-

- (A) Both I and II are true
- (B) Only I is true
- (C) Only II is true
- (D) Both I and II are false
- F-1029

P.T.O.

5. Let $x_1, x_2, ..., x_n$ be a random sample from N(O,O²) normal distribution. The distribution possess MLP property in statistics T(x)=

- (D) None of these
- 6. To test H: $\theta \leq \theta_0$ versus K: $\theta > \theta_0$ based on a random sample of size *n* from f(x, θ)= $e^{-(x-\theta)}$, $x \geq \theta$, the test statistic used to obtain UMP test is

F-1029

[5]

7. Necessary condition(s) for test $\phi(x)$ to be α -similar to	9. The range of size of any test is
test H: $\theta \in \Omega_{H}$ versus K: $\theta \in \Omega_{K}$ is(are)	(A) 1 to n
I. $\phi(x)$ must be unbiased	(B) 0 to ∞
II. power function of the test is continuous in θ .	(C) 0 to 1
The correct answer is-	(D) -1 to 1
(A) Only I	10. For LRT consider the following statements-
(B) Only II	I: The large value of criterion λ (\underline{x}) will test to reject $\mathrm{H_{_0}}$
(C) Neither I nor II	II: While formating LRT, there is no severe assumption on
(D) Both I and II	the nature of the probability density function
8. Necessary condition for existence of UMP test in general	The correct answer is-
to test H: $\theta = \theta_0$ versus K: $\theta \neq \theta_0$ under regularity condi-	(A) I but not II
tion is $\partial \log L(\theta \underline{x}) = 0$	(B) II but not I
(A) $\frac{\partial \theta}{\partial \log L(\theta \mid \underline{x})} \Big _{\theta = \theta_0}^{\theta = \theta_0} = 0$	(C) Both I and II are true
(B) $\overline{\partial \theta} \int_{\theta=\theta_1}^{\theta=\theta_1} 0$	(D) Both I and II one false
(C) $\frac{\partial \log L(\theta \mid \underline{x})}{\partial \theta} = \text{constaint independent of } \underline{x}$	
(D) $\frac{\partial^2 \log \tilde{L}(\theta \mid \underline{x})}{\partial \theta} \int_{\theta = \theta_0}^{\theta = \theta_0} = 0$	

11. 'SPRT' stands for

- (A) Simple probability ratio test
- (B) Single probability ratio test
- (C) Sequential probability ratio test
- (D) Sequential probability random test
- 12. Criterion for no decision at mth stage in SPRT with B<A
 - (A) $\lambda^{m}(x) \leq B$
 - (B) $\lambda_m(x) \ge A$
 - (C) $B < \lambda_m(x) < A$
 - (D) $A < \lambda_m(x) < B$
- 13. In SPRT with B<A, under usual notations, the OC

function of the test is

(A)
$$\frac{1-B^{h(\theta)}}{A^{h(\theta)}-B^{h(\theta)}}$$

(B)
$$\frac{A^{h(\theta)}-B^{h(\theta)}}{1-B^{h(\theta)}}$$

(C)
$$\frac{1-A^{h(\theta)}}{B^{h(\theta)}-A^{h(\theta)}}$$

(D)
$$\frac{B^{h(\theta)}-A^{h(\theta)}}{1-B^{h(\theta)}}$$

F-1029

14. In usual notations, ASN for SPRT with B<A is-

$$(A) \quad \frac{A.L(\theta) + B.(1 - L(\theta))}{E_{\theta}(z)}$$

$$(B) \quad \frac{L(\theta).\log A + (1 - L(\theta)).\log B}{E_{\theta}(z)}$$

$$(C) \quad \frac{L(\theta).\log B + (1 - L(\theta)).\log A}{E_{\theta}(z)}$$

$$(D) \quad \frac{L(\theta).\log A - (1 - L(\theta)).\log B}{E_{\theta}(z)}$$

15. When null hypothesis is true and $h(\theta) = 1$, the OC function of SPRT becomes

(B) β

(A) α

- (C) 1-α
- (D) 1-β

16. An alternative non parametric test for testing means of two population compared to parametric t-test is

- (A) Mann-Whitney \cup test
- (B) Run test
- (C) Sign test
- (D) None of these
- F-1029

- 17. In Mann-Whitney \cup test for two samples of sizes n_1
 - and n_2 , $E(\cup)=$ (A) $\frac{n_1n_2}{2} + 1$ (B) $\frac{n_1+n_2}{2}$ (C) $\frac{n_1}{n_1+n_2}$ (D) $\frac{n_1n_2}{2}$
- 18. Test used for goodness of fit with very small sample size is
 - (A) Sign test
 - (B) Run test
 - (C) K-S test
 - (D) Median test
- 19. The differences of 5 pair values are given below
 - i: 1 2 3 5 4 -1 1 Di: -5 1 5 Then the value of $T^+ =$ (A) 7 (B) 26.5 (C) 8.5 (D) 9

- 20. Total number of runs of symbol 'F' in the following sequence is MMFFFMMFFMF (A) 11 (B) 5 (C) 6 (D) 3 Section - B (Very Short Answer Type Question) (2 marks each)
- Note: -Attempt all questions. Answer precisely using 2-3 sentences only.
 1. Define randomised test function.
 2. Define power of the test.
 3. Define unbiased test.

F-1029	
--------	--

- 4. State MLR property.
- 5. State LRT criterion.
- 6. State the distribution used in sign test.
- 7. State stopping bounds with approrimate values in SPRT
- 8. When median test is used?

Section-C

(Short Answer Type questions)

(3 marks each)

Note- Attempt all questions. Write your answer using 75 words.

- 1. Let X has binomial $b(2, \theta)$ distribution. To test H: $\theta = \frac{1}{2}$ versus K: $\theta = \frac{3}{4}$ a randomised test $\phi(x)$ bio is defined as $d(x) = e^{-x}$, $x \in \mathcal{X}$. Then obtain probability of type-I and type-II errors.
- Let X ~ U(θ, θH) uniform distribution. To test H: θ=0 versus K: θ=1, the test function is d(x)=1 if x>0.95 and O otherwise. Obtain size and power of the test.

F-1029 P.T.O.

[12]

- 3. Prove that every UMP test if exists, it is UMPU.
- 4. State important properties of LRT.
- 5. Describe sign test.
- 6. Describe Run test.
- 7. Obtain ASN function of SPRT
- 8. In SPRT, with usual notations show that $B \ge \frac{\beta}{1-\alpha}$

Section-D

(Long Answer Type Questions)

(5 marks each)

- Note- Attempt all questions. Write your answer using 150 words.
- 1. Let x_1 and x_2 be iid poisson (λ) random variables. Consider non randomised test function

 $\phi_1(\mathbf{x}_1) = \begin{cases} 1, & \text{if } x_1 = 2\\ 0, & \text{otherwise} \end{cases}$

to test H: $\lambda \leq 1$ versus K: $\lambda > 1$

Hence, deduce randomised test function

F-1029

 $E[\phi_1(x_1)|x_1+x_2=t]$. Also obtain its size.

OR

Let $x_1, x_2, ..., x_n$ be a random sample from $\bigcup (0, \theta), \theta > 0$ uniform distribution. Derive UMP test for testing $H: \theta \le \theta_0$ versus $K; \theta > \theta_0$. Also, obtain power function of the test.

2. Let $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$. To test H; $\mu_1 = \mu_2$ versus K: $\mu_1 \neq \mu_2$ derive level α LRT.

OR

Let $X_i \sim IN(\mu, \sigma^2)$, i = 1, 2, ..., n. Consider a problem for testing H: $\mu = \mu_0$ versus K: $\mu \neq \mu_0$, μ and σ^2 both are unknown. Obtain LRT of level α .

3. Obtain general form of O.C. function of SPRT.

OR

Let x_1, x_2, \dots be a sequence of observations from uniform U(0, θ), θ >0 distribution. Describe SPRT procedure to test H: $\theta = \theta_0$ versus K: $\theta = \theta_1(\theta_1 > \theta_0)$. 4. Obtain probability distribution of T^+ in case of a sample of size 4 with all distinct values.

OR

Describe chi-square test of goodness of fit.